DETOURS

De-escalating Empiric Treatment: Opting OUt of Rx for Selected Patients with Suspected Sepsis

<u>Moehring RW</u>, Yarrington MY, Warren BG, Lokhnygina YL, Atkinson E, Bankston A, Coluccio J, David MZ, Davis A, Davis J, Dionne B, Dyer A, Jones T, Klompas M, Kubiak DW, Marsalis J, Omorogbe J, Orajaka P, Parish A, Parker T, Pearson JC, Pearson T, Sarubbi CS, Shaw C, Spivey J, Wolf R, Wrenn RH, Dodds Ashley ES, Anderson DJ, and the <u>CDC Prevention Epicenters Program</u>

dcasip.medicine.duke.edu

Disclosures

Funding: CDC Prevention Epicenters Program (U54CK000483)

Clinicaltrials.gov identifier: NCT03517007

Epicenters Study Sites

Hospital Univ of Pennsylvania Pennsylvania Presbyterian Brigham and Women's Hospital Duke University Hospital

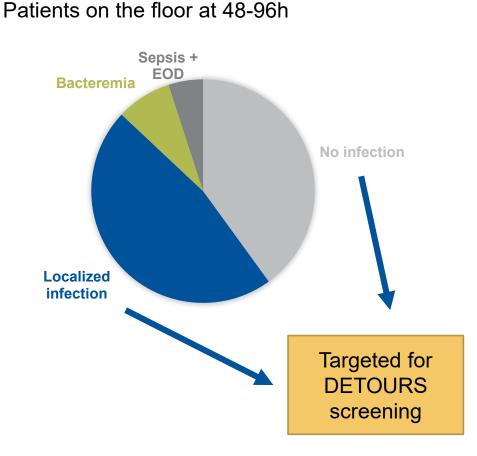
DASON Partners

Piedmont Atlanta Hospital Piedmont Fayette Hospital Piedmont Newnan Hospital Iredell Memorial Hospital Wilson Medical Center Southeastern Regional Medical Center

Rationale for the Trial

- Initiation of broad-spectrum antibiotics required in CMS SEP-1 Core Measure.¹ No requirement for de-escalation.
- Surviving Sepsis guidelines² recommend a daily review to deescalate or discontinue antibiotic treatment in appropriate patients
- Overall, antibiotics in septic shock are important, but implementation of SEP-1 could lead to overuse: Timing; misdiagnosis; mandates.

Need to find "equilibrium" in sepsis care³


Aim: Assess effects of an opt-out protocol to decrease unnecessary antibiotics in selected patients with suspected sepsis

¹Inpatient Hospital Specifications Manual. Available at: <u>https://www.qualitynet.org/</u> ²Levy et al. CCM 2018; 46(6): 997-1000. Rhodes et al. Intensive Care Med 2017; 43 (3):304-77. ³Klompas et al. JAMA 2018; 320(14):1433-1434. Rhee et al. CID 2021; 72(4): 541-552.

DETOURS Randomized Controlled Trial

- <u>Study Design</u>: multicenter, patient-level randomized trial
- <u>Study population</u>: adult patients in non-ICU inpatient units with negative initial blood cultures on broad antibiotics at 48-96h + passed DETOURS safety screen
- Study period: 9/2018 through 5/2020
- Intervention: DETOURS opt-out protocol

- Blood cultures negative at 48-96 hours* * OK to include CoNS patients without a central line
- Patient on broad-spectrum antibiotics (Rank 2, 3 or 4 on Antibiotic Rank Chart)

Has the patient met the screening criteria?

Narrow spectrum	Broad spectrum	Extended spectrum, including MDRO and Pseudomonas	Protected
1	2	3	4
1st- and 2nd-	Ceftriaxone	Anti-pseudomonal	Anti-pseudomonal
generation	3rd-generation oral	penicillins	Carbapenem
cephalosporins	cephalosporins	Fluoroquinolones	Colistin
Amoxicillin	Azithromycin	Aminoglycosides	Tigecycline
TMP/SMX	Clarithromycin	Vancomycin	Linezolid, Tedizolid
Nafcillin, Oxacillin	Amoxicillin/clavulanate	Cefepime, Ceftazidime	Daptomycin
Metronidazole	Ampicillin/sulbactam	Ertapenem	Ceftaroline
Doxycycline	Clindamycin	Aztreonam	Ceftazidime/avibactam
Nitrofurantoin			Ceftolozane/tazobactam
Penicillin			

Moehring et al. CID 2020 Jul 8. doi: 10.1093/cid/ciaa932

Ļ

Ē

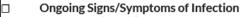
Step 2

Safety Check:

Developed by CDC/Epicenters expert collaborators + site stakeholders¹

Modified Delphi panel process

Lit Review + Survey + Discussion


¹Yarrington et al. ASHE 2021 (in press).

Duke Center for Antimicrobial Stewardship and Infection Prevention) Safety Check

Determine if patient passes the safety check

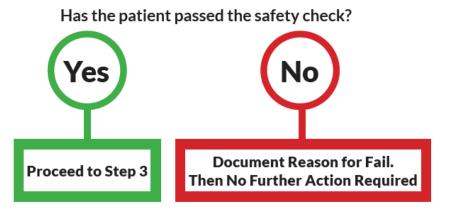
Apply the safety check

- continued fever
- new chest x -ray infiltrate
- empyema
- Iung abscess
- continued significant leukocytosis
- Concerning/Inadequate Microbiological Data
 - positive blood cultures*
 - *Note: OK to stop if contaminate and no central line
 - positive microbiological data
 - no cultures during sepsis work-up
 - antibiotic use prior to blood culture

- High-Risk Comorbidity/Severe Illness
 - bronchiectasis
 - asplenia/splenectomy
 - cystic fibrosis
 - pregnant
 - recent I&D procedure
 - ongoing respiratory insufficiency
 - immunocompromised
 - □ HIV/AIDS with CD4 count < 200
 - taking immunosuppresive agents

Select population considered Low

Risk "Rule Outs"


Identify scenarios

antibiotics.

where SAFE to stop

- agammaglobulinema
- bone marrow aplasia
- neutropenia
- transplant recipient

Patient fails safety check if meets any of the above criteria

Step 3

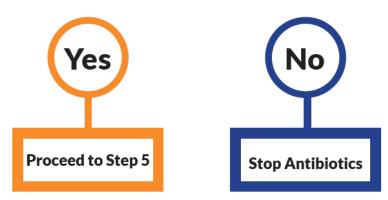
Consult Randomization Scheme provided by study team

Step 4

Verbal Interaction Required

Suggested language provided

"Opt-out" = Antibiotics were continued.


Duke Center for Antimicrobial Stewardship and Infection Prevention

Interact with the team using the following language

"[This patient] passed the safety screen for de-escalation of antibiotics. Antibiotics will be stopped per protocol unless you opt-out."

Did the treatment team opt-out?

₽

Step 5

Still an opportunity to impact therapy!

Voice rationale, diagnosis, plan

De-escalation (broad to narrow)

Duration

Duke Center for Antimicrobial Stewardship and Infection Prevention

Guided De-Escalation Discussion

Better understand opt-out rationale and identify opportunities for antibiotic optimization

Engage with treatment team and document answers to four questions:

- 1. "Why should antibiotics be continued in this patient?"
- 2. "What is the patient's infection diagnosis?"
- 3. "Can you narrow the breadth of antibacterial coverage to the most likely pathogens?"
 - Refer to Local Empiric Guidelines, Antibiogram, patient's culture data, and Antibiotic Rank Chart

4. "If the patient remains stable and no new clinical data emerge to suggest a different diagnosis, do you have an empiric de-escalation and/or duration of therapy plan?"

- Refer to Local Duration Guidelines for common syndromes
- Offer to adjust orders or stop dates to match the voiced de-escalation and duration plan
- Reassess in 48 hours if other opportunities to de-escalate may be possible

Primary Outcome: Patient-level postrandomization DOT, inpatient and post-discharge

- A third or more antibiotic exposures occur post-discharge^{1,2}
- DOT count started the day AFTER enrollment, ends 30 days after enrollment
- Assume post-discharge DOT starts the day AFTER discharge
- If stopped antibiotics on day of enrollment, then DOT=0

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6
¹ Dyer AP, et al. ICHE. 2019; 40: 847–854. ² Feller et al. Clin Microbiol Infect. 2020; 26(3):327-332.				DOT=1	2	3
	BCx		Enrolled			
	Inpatient	Inpatient	Inpatient	Inpatient	Discharged	Post-dc
Duke Center for						

ntection Preventior

SA5 Analyses:

- #1: Post-enrollment DOT: Hurdle model regression, treatment as the only covariate
- #2: Probability of a better DOOR/RADAR:¹ intervention vs. control, Wilcoxon rank-sum test
- <u>Secondary (Descriptive)</u>: individual components of DOOR; AU Rank (1-4); AU inpatient vs. post-discharge; rationales for Opt-Out
- <u>Subgroup analyses:</u> community vs. academic hospital; medicine vs. medsurgical/surgery

¹Evans et al. CID 2015 Sep 1;61(5):800-6.

DETOURS Results: Hospital Characteristics

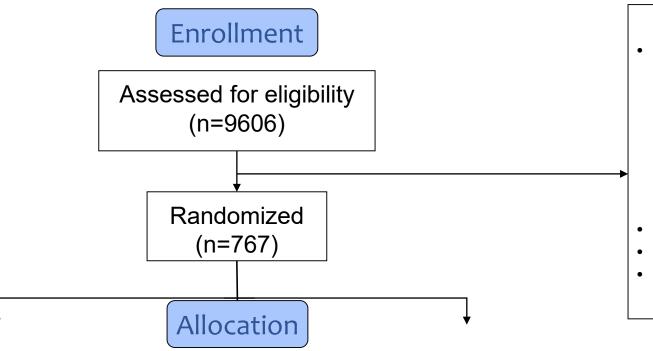
	N hospitals N= 10
Inpatient Bed size, median (range)	297 (154-952)
Medium (150-350)	6
Large (351-500)	1
Very large (>500)	3
Rural	2
Urban	8
State	
Georgia	3
Massachusetts	1
North Carolina	4
Pennsylvania	2
Hospital Type	
Major Academic Medical Center (AMC)	3
Teaching, affiliated with AMC	1
Teaching, not affiliated with AMC	2
Non-teaching	4

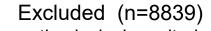
Protocol Implementation Strategy

Sites developed written SOP for DETOURS based on:

Research staff resources

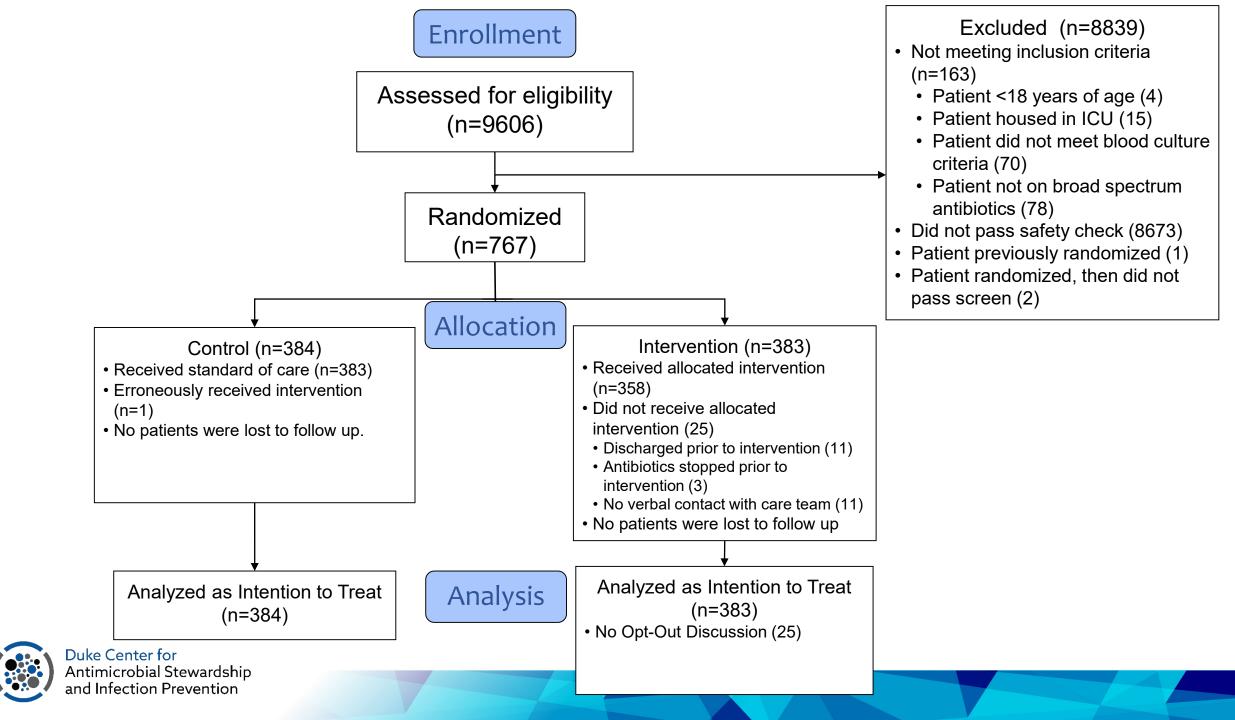
BCx Reports/Tools in their system


ASP resources

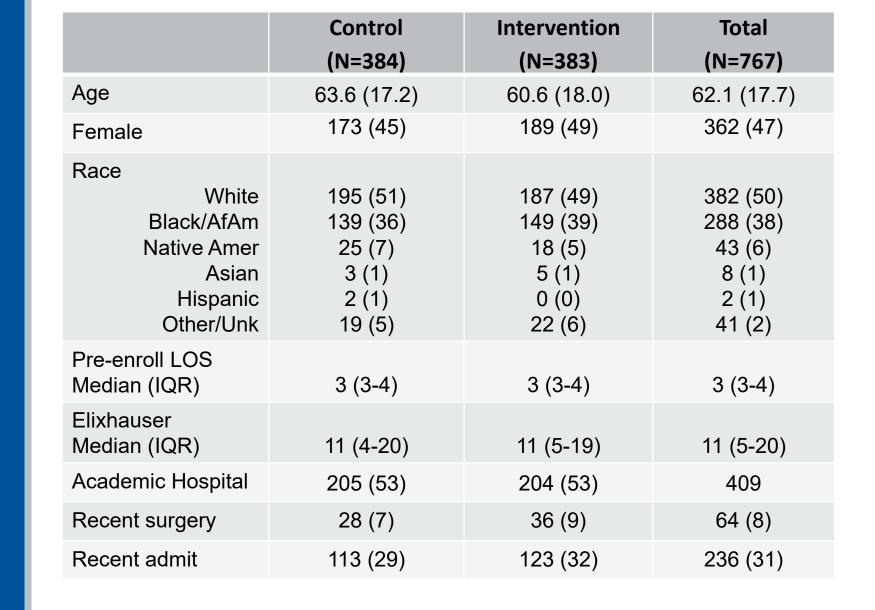

Communication strategies already in practice

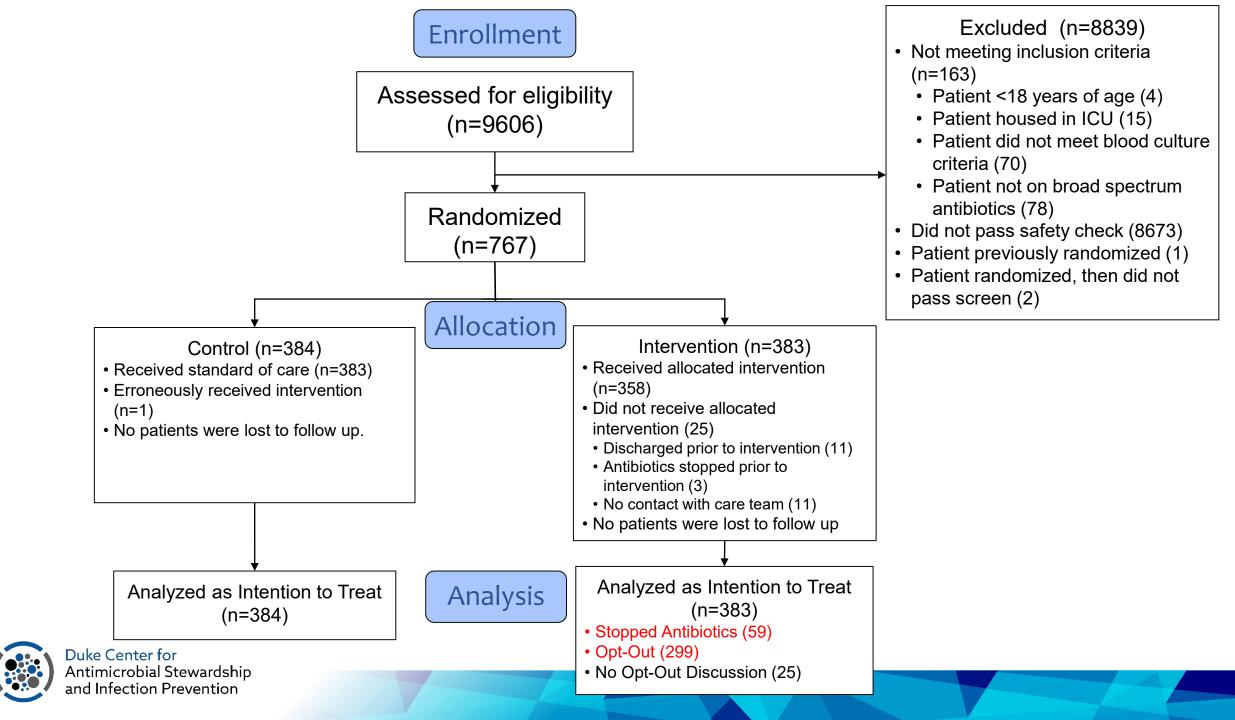
	N hospitals (%) N= 10
Pharmacist(s) performing opt-out discussion Clinical pharmacist	4
ID-trained pharmacist	5
Both	1
Study coordinator performed screening	4
ASP MD review of patients after screening	4
Communication method	
Pager/phone	4
Face-to-face discussion	1
Both	5
Focused screening by clinical service line	
Medicine only	2
Medicine and surgery	8

- Not meeting inclusion criteria (n=163)
 - Patient <18 years of age (4)
 - Patient housed in ICU (15)
 - Patient did not meet blood culture criteria (70)
 - Patient not on broad spectrum antibiotics (78)
- Did not pass safety check (8673)
- Patient previously randomized (1)
- Patient randomized, then did not pass screen (2)

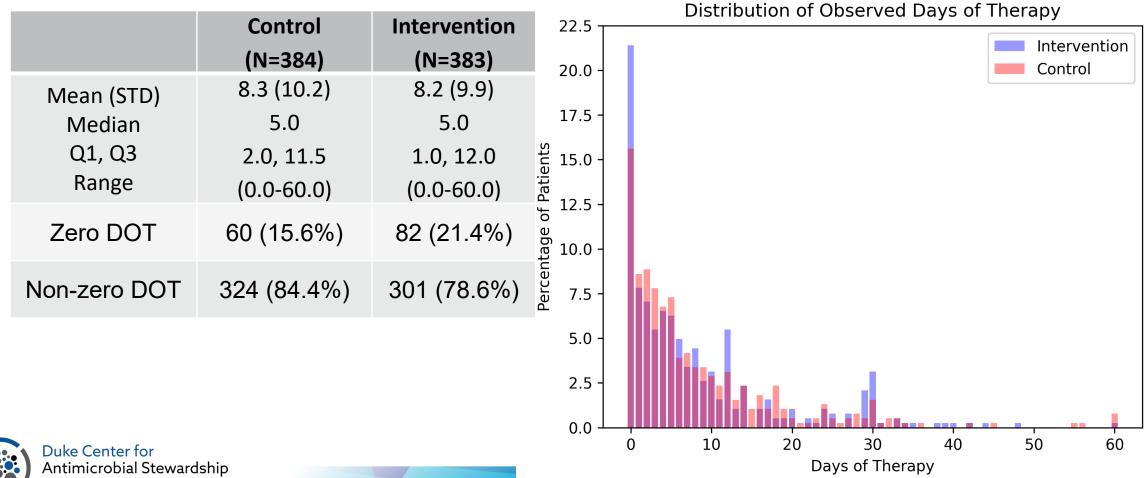


Safety Screen (Top 10)


Screened patients Safety Check Criteria	Total Screened N=9440
Antibiotics 48 Hours Prior to First Blood Culture	3245 (35)
Positive Bacterial Cultures in Previous 4 Days	2410 (26)
New or Higher than Baseline Oxygen Requirement	1987 (21)
New and Persistent Infiltrate on Chest Imaging in the Last 4 Days	2416 (26)
Fever (>= 38.0°C) in the Last 48 Hours	1716 (18)
White Blood Count (WBC) > 14 in the Last 24 Hours	1479 (16)
Actively Taking Immunosuppressant Medications	1185 (13)
Diagnosis of Bacteremia or Bloodstream Infection During this Admission or from an Outside Hospital Prior to Transfer	1039 (11)
Solid Organ or Bone Marrow Transplant	607 (7)
Incision and Drainage Procedure for Infection in the Last 7 Days	792 (9)


Ę.

Results: Descriptive



Post-enrollment Days of Therapy (Primary Outcome)

and Infection Prevention

Ę

Hurdle Models: Primary Outcome

	Odds of Non-Zero DOT OR (95% CI)	P-value	Truncated Negative Binomial for Non-Zero DOT Ratio of Means (95% CI)	P-value
Post-randomization DOT (Primary Outcome)	0.68 (0.47, 0.98)	<mark>0.04</mark>	1.06 (0.88, 1.26)	0.55

- Odds of continuing antibiotics in the intervention group were <u>32% smaller</u>, compared to the control group.
- Among those who did receive antibiotics after enrollment, DOT distributions were not statistically different.

F

AU by Spectrum Rank¹

Narrow spectrum	Broad spectrum	Extended spectrum, including MDRO and Pseudomonas	Protected
1	2	3	4
1st-and 2nd-	Ceftriaxone	Anti-pseudomonal	Anti-pseudomonal
generation	3rd-generation oral	penicillins	Carbapenem
cephalosporins	cephalosporins	Fluoroquinolones	Colistin
Amoxicillin	Azithromycin	Aminoglycosides	Tigecycline
TMP/SMX	Clarithromycin	Vancomycin	Linezolid, Tedizolid
Nafcillin, Oxacillin	Amoxicillin/clavulanate	Cefepime, Ceftazidime	Daptomycin
Metronidazole	Ampicillin/sulbactam	Ertapenem	Ceftaroline
Doxycycline	Clindamycin	Aztreonam	Ceftazidime/avibactam
Nitrofurantoin			Ceftolozane/tazobactam
Penicillin			

Duke Center for Antimicrobial Stewardship and Infection Prevention

	Control, N=384		Interventio	on, N=383
	N patients (%)	Sum DOT (% of total DOT)	N patients (%)	Sum DOT (% of total DOT)
Rank 1	123 (32)	942 (29)	112 (29)	932 (30)
Rank 2	162 (42)	1001 (31)	174 (45)	1071 (34)
Rank 3	167 (44)	1147 (36)	138 (36)	1053 (34)
Rank 4	16 (4)	113 (4)	13 (3)	66 (2)
Rank 3-4	169 (44)	1260 (39)	144 (38)	1119 (36)
Total non- zero	324 (84)	3203	301 (79)	3122

Intervention:

Lower number of patients exposed to Rank 3-4 agents. Lower number of Rank 3-4 DOT. 57% De-escalation by day 5 (vs. 53% Control)¹

¹Moehring et al. CID 2020 Jul 8;ciaa932. doi: 10.1093/cid/ciaa932

Summary: AU

- The intervention worked. Odds of continued antibiotics were a third lower.
- Among those who did continue antibiotics, DOT distributions were not different.
- Observations:
 - Antibiotic Stops were more common among Rank 3 agents and Inpatient DOT.
 - Durations appeared more standardized among intervention patients.
 - Comparing across patients, the Intervention group had a lower number of patients exposed to Rank 3-4 agents, a lower number of Rank 3-4 DOT, a lower number of post-discharge days.

30-day Safety Outcomes:

	Control	Intervention	Total
	(N=384)	(N=383)	(N=767)
Readmission	57 (14.8%)	61 (15.9%)	118 (15.4%)
Relapse of Suspected Sepsis	30 (7.8%)	30 (7.8%)	60 (7.8%)
C. difficile infection	7 (1.8%)	4 (1.0%)	11 (1.4%)
DVT	6 (1.6%)	1 (0.3%)	7 (0.9%)
ICU admission	33 (8.6%)	26 (6.8%)	59 (7.7%)
Hemodialysis	8 (2.1%)	1 (0.3%)	9 (1.2%)
Death	16 (4.2%)	10 (2.6%)	26 (3.4%)
Sum of Safety Events	157 (41%)	133 (35%)	290 (38%)
PICC Line	11 (2.9%)	11 (2.9%)	22 (2.9%)
Post-randomization LOS			
Median (IQR)	2 (1, 6)	2 (1, 6)	2 (1, 6)
Re-initiation of inpatient antibiotic			
therapy after >48 hours of no antibiotics within 30-days post- randomization, N (%)	16 (4.2%)	16 (4.2%)	32 (4.2%)

Ē

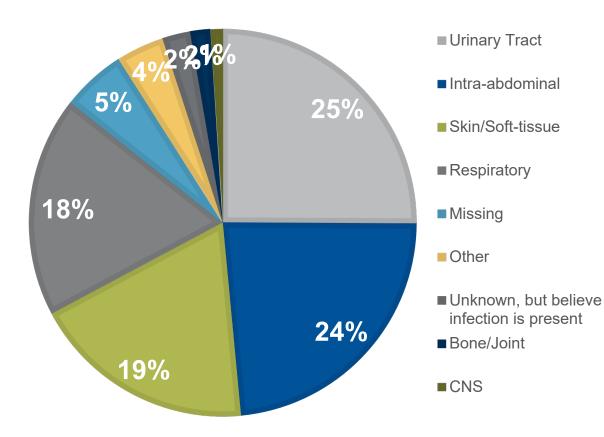
Desirability of Outcome Ranking (DOOR), Response Adjusted for Duration of Antibiotic Risk (RADAR)

Duke Center for Antimicrobial Stewardship and Infection Prevention

	1	I		
DOOR	N (%)	Control	Intervention	Total
1	Alive	289 (75.3%)	301 (78.6%)	590 (76.9%)
2	Readmission, relapse of suspected sepsis, <i>C.</i> <i>difficile</i> infection, OR deep venous thrombosis	33 (8.6%)	31 (8.1%)	64 (8.3%)
3	≥2 of items in DOOR=2 above	18 (4.7%)	16 (4.2%)	34 (4.4%)
4	Subsequent ICU Admission OR hemodialysis	25 (6.5%)	25 (6.5%)	50 (6.5%)
5	Subsequent ICU Admission AND hemodialysis	3 (0.8%)	0 (0.0%)	3 (0.4%)
6	Death	16 (4.2%)	10 (2.6%)	26 (3.4%)

Probability of a better DOOR/RADAR (95% CI) = 0.52 (0.48-0.56), p=0.245

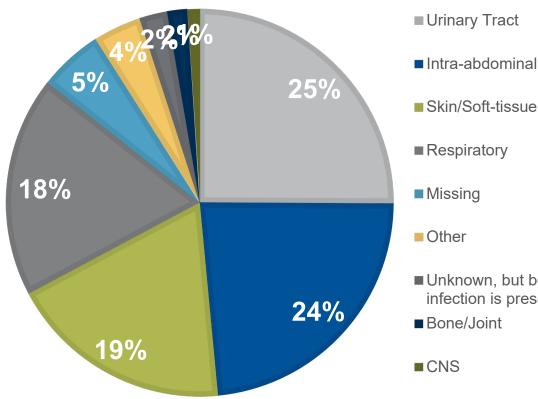
Among Intervention group: Stop vs. Opt-Out



Duke Center for Antimicrobial Stewardship and Infection Prevention

	Stop		
	Antibiotics	Opt-Out	Total
	(N=59)	(N=299)	(N=358)*
Clinician Type			
Physician	46 (79)	204 (70)	250 (71)
Trainee physician (fellow, resident or intern)	5 (9)	66 (23)	71 (20)
Nurse practitioner	5 (9)	14 (5)	19 (5)
Physician's assistant	2 (3)	9 (3)	11 (3)
Clinician's rationale for continuing antibiotics (m	ultiple respo	nse questi	on)
Treatment of localized infection		227 (76)	
Believe that stopping antibiotics is unsafe, NOS		93 (31)	
Pending clinical data		61 (20)	
Clinical uncertainty		36 (12)	
Inadequate initial culture or diagnostic work up		35 (12)	
Defer antibiotic decision-making to consultant		30 (10)	
Perceived administrative need for antibiotics		23 (8)	
Other		2 (<1)	
		Z (N)	

*No opt-out discussion in 25 patients analyzed as ITT.


Among Opt-Out Events: Indication

Urinary Tract Infection Intra-abdominal Infection Skin/Soft-tissue Infection Respiratory Tract Infection

Among Opt-Out Events: Indication

Urinary Tract Infection Respiratory Tract Infection Respiratory

- Unknown, but believe infection is present
- Bone/Joint
- CNS

Intra-abdominal Infection Skin/Soft-tissue Infection

55 29 (53) Pneumonia – CAP 18 (33) **Bronchitis/COPD Exacerbation** 6 (11) Pneumonia- HCAP/HAP **URI/ENT** 1 (2) Missing 1

Trial Limitations

10 sites with varied resources, protocol implementation strategies

Selected population for low-risk suspected sepsis events

- Avoided direct measurement of "appropriateness"
- Safety check criteria not perfect

Screening processes required high levels of personnel effort for chart review

Not blinded to intervention

Summary

Duke Center for Antimicrobial Stewardship and Infection Prevention First patient-level RCT evaluating a stewardship intervention.

Done in diverse, multicenter hospital settings.

Safety check screening resulted in narrow patient selection.

Intervention resulted in more antibiotic stops, by about a third.

Tended toward more narrow agents and standard durations, but DOT distributions were similar.

Opt-out Intervention was safe.

Opt-out rationales revealed known challenges in sepsis care: diagnostic uncertainty, risk assessments

Thank you!

Epicenters Study Sites

Penn (Michael David) Penn Presbyterian Brigham and Women's (Mike Klompas) Duke U (Mike Yarrington)

DASON Study Sites

Piedmont Atlanta
Piedmont Fayette
Piedmont Newnan
Iredell Memorial
Wilson Medical Center
Southeastern Regional Medical Center

Duke Team Dev Anderson Bobby Warren Mike Yarrington Yuliya Lokhnygina Alice Parish Libby Dodds Ashley Angelina Davis April Dyer Travis Jones

> <u>Advisors</u> Sara Cosgrove Sujan Reddy

DETOURS Expert Panel

<u>Duke:</u> Dev Anderson, Libby Dodds-Ashley, Cara O'Brien, Christina Sarubbi, Rebekah Wrenn

DASON: Charles Callahan, Christine Zurawski, Brett Sandifer

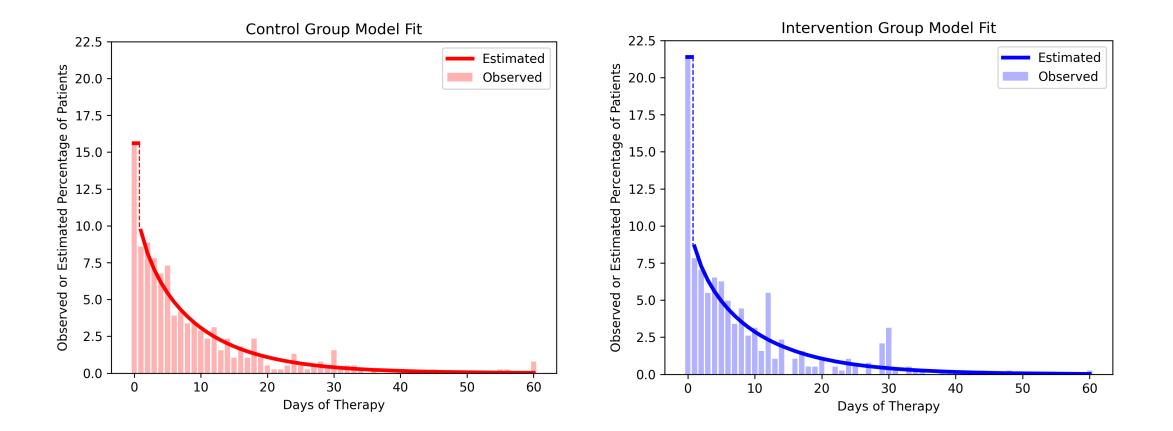
<u>WashU</u>: Kevin Hsueh, Tiffany Osborn, Robert Martin, Holley Beiter

Harvard: Mike Klompas, Chanu Rhee

<u>UPenn</u>: Michael David, Keith Hamilton, Mark Mikkelesen, Craig Umscheid, Bill Schweickert

<u>CDC</u>: Tony Fiore, John Jernigan, Sujan Reddy

UT San Antonio: Marcos Restrepo


EXTRA SLIDES

dcasip.medicine.duke.edu

Model Fit: Primary Outcome

Descriptive

*Assigned at the end of admission.

	Control	Intervention	Total
	(N=384)	(N=383)	(N=767)
Unit type at enroll Medical Med/Surg Surgical Tele Other	223 (58) 57 (15) 76 (20) 12 (3) 14 (4)	217 (57) 51 (13) 84 (22) 15 (3) 15 (5)	440 (58) 108 (14) 160 (21) 27 (3) 29 (4)
ICD-10 Infxn Dx* None >1 Infection	106 (28) 103 (27)	<mark>94 (25)</mark> 102 (27)	200 (26) 205 (27)
Bloodstream/Septicemia	27 (7)	16 (4)	43 (6)
	51 (13)	54 (14)	105 (14)
Skin and soft tissue	42 (11)	43 (11)	85 (11)
Intra-abdominal	19 (5)	36 (9)	55 (7)
Pneumonia	20 (5)	19 (5)	39 (5)
ENT	8 (2)	13 (3)	21 (3)
GI tract	3 (<1)	3 (<1)	6 (<1)
CNS	3 (<1)	0 (0)	3 (<1)
Bone and Joint	1 (<1)	2 (<1)	3 (<1)
GU/STI	1 (<1)	1 (<1)	2 (<1)

Context/Implications

Inpatient AS = time/effort, expertise, and relationships

One-time interventions produce varied, and somewhat small effects on DOT DETOURS: "sped up" decisions to stop

One-time review + feedback vs. follow-up, multiple points of contact, persuasive communication, coaching

<u>Diagnosis</u> continues to be the hardest "D" in sepsis and suspected sepsis

	Diagnosis	Make and document the right diagnosis
	Drug	Use the right empiric antibiotic
R _X	Dose	Use the right dose of antibiotic based on site of infection and renal or hepatic dysfunction
	Duration	Use antibiotics for the recommended duration
R ↓	De-escalation	De-escalate therapy based on susceptibilities and when urine cultures are negative