Implications of *C. difficile* Treatment on Environmental Contamination: A Randomized Controlled Trial with Microbiologic, Environmental and Molecular Outcomes

Nicholas Turner

with

M. Gergen, W.A. Rutala, D.J. Sexton, V.G. Fowler and D.J. Anderson

Duke University School of Medicine

dcasip.medicine.duke.edu

Disclosures

Nicholas Turner was supported in part by an ARLG Fellowship grant. The NIH was not involved in the design or conduct of the trial and the ideas presented herein do not necessarily represent those of the NIH.

The original trial was funded by Merck. Merck did not have a role in the design or conduct of the trial.

Outline

I. Background
II. Design
III. Outcomes
IV. Implications

Environmental Contamination... is everywhere

Computer keyboard 20%

Ali et al J Clin Micro 2015

Sink 25% 🛰

Bedrail 78%

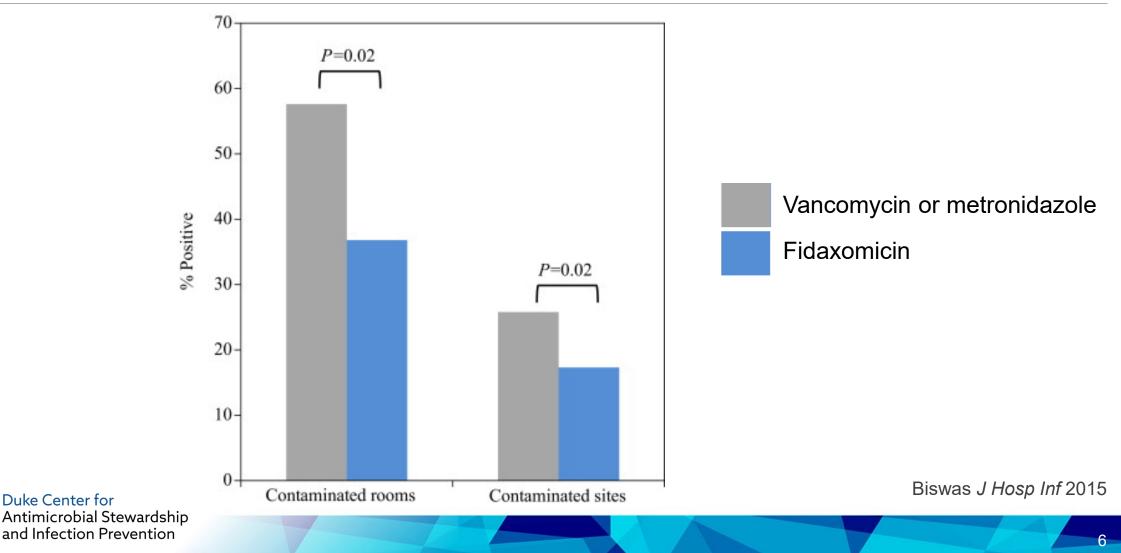
Bathroom assist bar 43% Bathroom floor 90% Toilet seat 57%

Chair arm 64% Bedside table 67% Linen bin 20% **Door handle 60%**

Floor 86%

Environmental C. difficile Increases Risk

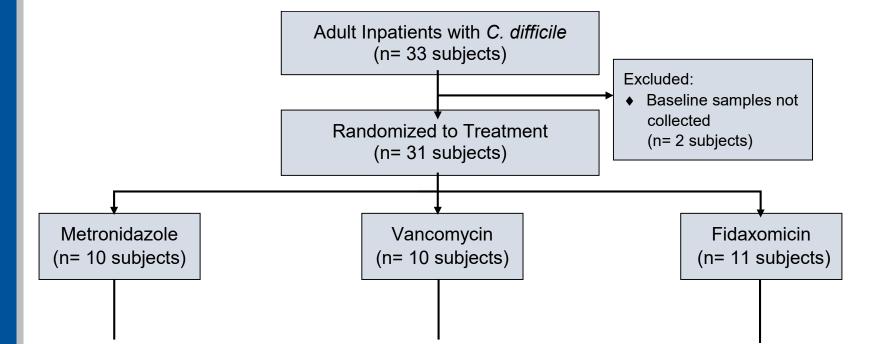
Table 3.


Multivariate Analysis of Risk Factors for Acquisition of Clostridium difficile Infection (CDI)

Risk factor	HR (95% CI)	P
Prior room occupant with CDI	2.35 (1.21–4.54)	.01
Greater age	1.00 (0.99–1.01)	.71
Higher APACHE III score	1.00 (1.00–1.01)	.06
Proton pump inhibitor use	1.11 (0.44–2.78)	.83

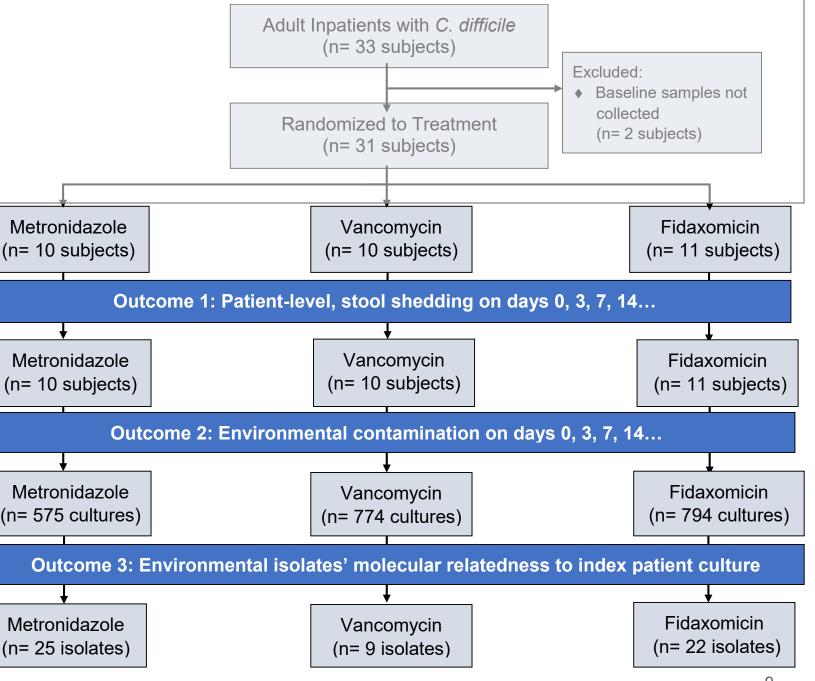
Shaughnessy et al ICHE 2011

Treatment choice may reduce shedding



Outline

I. Background
II. Design
III. Outcomes
IV. Implications


Study Design

Study Design

Metronidazole (n= 10 subjects) Metronidazole (n= 10 subjects) Metronidazole (n= 575 cultures)

Environmental Sampling

RODAC plates applied to 5 sites per room:

- 1) Bedrail
- 2) Over-bed table
- 3) Sink
- 4) Toilet
- 5) Floor

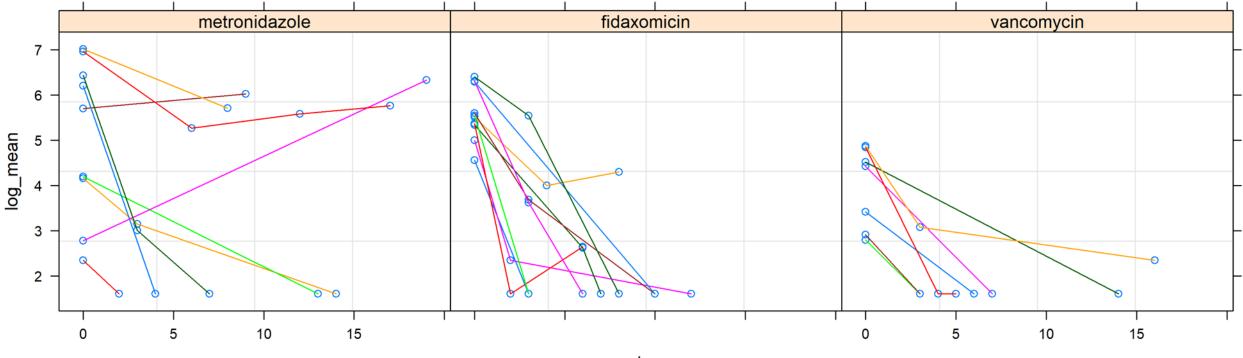
(x5 replicates for each site)

Photo courtesy of Bobby Warren

Participants

*Severe CDI based on presence of either WBC >15, <4 or Cr >1.5x change from baseline at any point

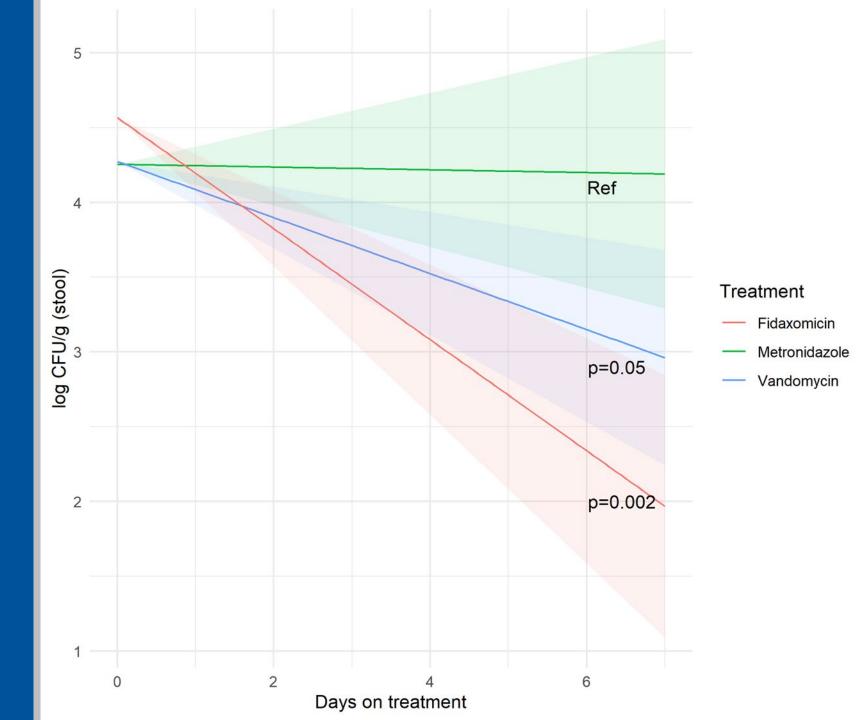
**Complicated CDI based on presence of hypotension, shock, or ileus at any point


	Metronidazole	Vancomycin	Fidaxomicin
	N=10 (%)	N=10 (%)	N=11 (%)
Age [median, IQR]	65 [57-68]	61 [56-71]	59 [45-68]
Gender, male	4 (40.0)	5 (50.0)	7 (63.6)
Race, white	5 (50.0)	6 (60.0)	6 (54.5)
Severe CDI*	1 (10.0)	4 (40.0)	1 (9.1)
Complicated CDI**	0 (0)	1 (10.0)	0 (0)
Cancer	8 (80.0)	4 (40.0)	4 (36.4)
Diabetes	4 (40.0)	6 (60.0)	6 (54.5)
CHF	4 (40.0)	4 (40.0)	5 (45.5)
CKD	2 (20.0)	3 (30.0)	4 (36.4)
CTD	2 (20.0)	2 (20.0)	2 (18.2)
CVA	1 (10.0)	5 (50.0)	2 (18.2)
Liver	0 (0)	1 (10.0)	0 (0)
Pulmonary	2 (20.0)	1 (10.0)	3 (27.3)
HIV	0 (0)	0 (0)	0 (0)
Charlson Index	5.2 [3.7-9.4]	7.2 [2.7-11.0]	4.2 [3.2-9.4]
[median, IQR]			
WBC [median, IQR]	10.1 [5.0-11.2]	12.5 [9.8-20.4]	9.2 [4.5-12.2]
Cr [median, IQR]	1.4 [0.9-1.7]	0.9 [0.7-1.2]	0.8 [0.7-1.0]

Outline

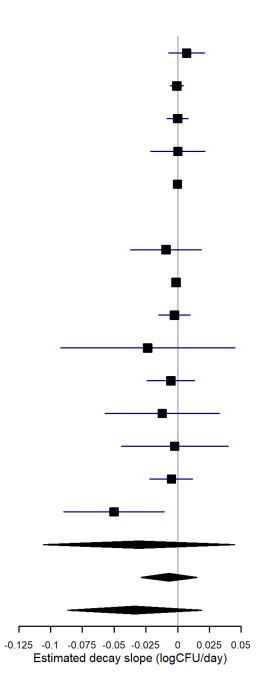
I. Background
I. Design
III.Outcomes
IV.Implications

Raw Longitudinal Data


day

Effect on *C. difficile* Shedding

Mixed effects model


Effect on C. difficile Environmental Contamination

Mixed effects model

Duke Center for Antimicrobial Stewardship and Infection Prevention

Site	Treatment	p-value
Bedrail	Metronidazole	Ref
	Vancomycin	0.38
	Fidaxomicin	0.13
Overbed	Metronidazole	Ref
	Vancomycin	0.23
	Fidaxomicin	*
Sink	Metronidazole	Ref
	Vancomycin	0.22
	Fidaxomicin	0.53
Toilet	Metronidazole	Ref
	Vancomycin	0.13
	Fidaxomicin	0.44
Floor	Metronidazole	Ref
	Vancomycin	0.96
	Fidaxomicin	0.61
Total CFUs	Metronidazole	Ref
	Vancomycin	0.25
	Fidaxomicin	0.69

Effect on *C. difficile* Environmental Contamination

Sito

Troatmont

Proportional t-tests

Duke Center for Antimicrobial Stewardship and Infection Prevention

*2-sample proportional t-test with continuity correction

Site	Ireatment	Positive cultures (%)	p-value*
Bedrail	Metronidazole	12/115 (10.4)	Ref
	Vancomycin	15/154 (9.7)	0.99
	Fidaxomicin	5/155 (3.2)	0.03
Overbed	Metronidazole	8/115 (7.0)	Ref
	Vancomycin	3/155 (1.9)	0.08
	Fidaxomicin	3/160 (1.9)	0.07
Sink	Metronidazole	16/115 (13.9)	Ref
	Vancomycin	6/155 (3.9)	0.006
	Fidaxomicin	12/160 (7.5)	0.13
Toilet	Metronidazole	33/115 (28.7)	Ref
	Vancomycin	13/155 (8.4)	<0.001
	Fidaxomicin	30/160 (18.8)	0.07
Floor	Metronidazole	38/115 (33.0)	Ref
	Vancomycin	22/155 (14.2)	<0.001
	Fidaxomicin	56/159 (35.3)	0.81
Total	Metronidazole	107/575 (18.6)	Ref
	Vancomycin	59/774 (7.6)	<0.001
	Fidaxomicin	106/794 (13.3)	0.01

Docitivo culturos (%)

n valua*

Patient: Room Isolate Matching

Pilot cohort

Stool sample	
Bedside table	
Bedside table	
Siderail of bed	
Bathroom	
Toilet seat	
Toilet seat	
Bathroom	
Bathroom	
Bathroom	
Bathroom	
Floor	

Patient: Room Isolate Matching

Pilot cohort

Treatment	% Matching	p-value
Metronidazole [reference]	20/25 (80%)	
Vancomycin	7/9 (78%)	0.99
Fidaxomicin	15/22 (68%)	0.52

Outline

I. Background
I. Design
II. Outcomes
IV.Implications

Limitations

 Environmental sampling has a high degree of inter-sample variability
 Low power

Conclusions

Duke Center for Antimicrobial Stewardship and Infection Prevention 1) Fidaxomicin and vancomycin **reduced** *C. difficile* **shedding more rapidly** than metronidazole

2) While total environmental CFUs were not significantly different, fidaxomicin and vancomycin were associated with lower proportions of positive environmental cultures

3) Environmental strains mostly (but don't always) match patient isolates

Acknowledgements

Duke Center for Antimicrobial Stewardship and Infection Prevention

Clinical Research Training Program

Duke University School of Medicine

Duke Center for Antimicrobial Stewardship and Infection Prevention

DCASIP/DICON/DASON and Epi Mentor

- Deverick J. Anderson MD MPH

Antibacterial Resistance Leadership Group Mentor

- Anthony Harris MD MPH

Basic Science/Laboratory Mentor

- Vance G. Fowler MD MHS

Statistics Mentor

- Steve Grambow PhD