Molecular Epidemiology of C. difficile Within a Community Hospital: A Pilot for a Regional Survey

Duke Center for Antimicrobial Stewardship and Infection Prevention

1- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, NC, USA; 2- Division Of Infectious Diseases, Duke University Medical Center, Durham, NC, USA

Abstract

Background: Clostridium difficile is the leading cause of healthcare-associated infection. As incidence rises, its epidemiology is also evolving. 20-50% of cases are now community acquired; C. difficile cases arise from more diverse sources than previously thought. In thi study, we investigated the diversity of C. difficile within a community hospital.

Methods: Stool samples were collected from symptomatic adults with a positive C. difficile PCR admitted to Duke Regional Hospital from 7/2016 to 7/2017. Healthcare-associated CDI was defined by any admission to a hospital, nursing or dialysis facility in the precedin 30 days. *C. difficile* was isolated by ethanol shock followed by plating on CDSA media. DNA was extracted using a chelex-based protocol. PCR ribotyping was conducted using the Bidet primers and agarose gel electrophoresis. A dendrogram was constructed in Bionumerics by the un-weighted pair-group method with the threshold for identical strains set at 95% similarity.

Results: C. difficile was successfully isolated from 85% of submitted specimens. For this pilot study, PCR ribotyping was performed on a convenience sample of 70 isolates. C. *difficile* exhibited substantial diversity: 47 distinct ribotypes were observed among 70 isolates (figure 1). 14 clusters involving identical strain types were observed, totaling 35 isolates. Identical strain types suggestive of direct transmission were evenly split between hospital- (18 of 35, 51%) and community-acquired (17 of 35, 49%) cases. The median tim between clustered cases was 50 days (range: 7 to 331 days). 35 of 70 (50%) of all isolate exhibited entirely unique strain types.

Conclusions: C. difficile isolates in our community hospital exhibited tremendous genetic diversity. The high proportion of strains with entirely unique ribotypes suggests diverse sources of acquisition. These results are consistent with a growing body of literature in which 30-50% of C. difficile isolates are genetically distinct, even when direct transmission was suspected. We are currently expanding our survey to include a network of regional hospitals and clinics, with the goal of better characterizing *C. difficile*'s diverse and still poorly understood sources.

Background

- C. difficile is a leading cause of healthcare-associated infection, however its epidemiology is evolving: 20-50% of US cases are now community-acquired.
- Factors contributing to the shift in *C. difficile* from hospitals to the community, and for acquisition of *C. difficile* within the community, remain poorly understood.

Turner NA^{1,2*}, Warren B¹, Fowler VG^{1,2}, Anderson DJ^{1,2}

	Nethods			F		
	Stool sample	s were collecte	ed from adults with	n F		
			d to Duke Regiona			
		7/2016 to 7/20	•	C di		
	•			ĩ		
		Healthcare-associated CDI was defined by any				
	admission to	a hospital, nur	sing, or dialysis			
	facility in the	preceding 30 c	days.			
	C difficilo wa	e isolatod by c	thanol shock and			
			NA was extracted			
	•	ex-based proto				
		•	the Bidet primers			
	and agarose	gel electropho	resis. ¹			
	Results	and demogram	3% similarity.			
ļ		CO-CDI (n=32)		c l		
	Age [IQR]		HCFA-CDI (n=66)	S.		
		63 [53-72]	HCFA-CDI (n=66) 67 [55-74]	S.		
	Gender, female	63 [53-72] 13 (41)		S.		
			67 [55-74]	S.		
	Gender, female	13 (41)	67 [55-74] 36 (55)	S.		
	Gender, female Race, black	13 (41) 7 (22)	67 [55-74] 36 (55) 33 (50)	S.		
	Gender, female Race, black CCMI	13 (41) 7 (22)	67 [55-74] 36 (55) 33 (50)	S.		
	Gender, female Race, black CCMI Co-morbidities:	13 (41) 7 (22) 4.5 [2.3-7.3]	67 [55-74] 36 (55) 33 (50) 7.5 [4.3-9.7]	S.		
	Gender, female Race, black CCMI Co-morbidities: Diabetes	13 (41) 7 (22) 4.5 [2.3-7.3] 10 (55)	67 [55-74] 36 (55) 33 (50) 7.5 [4.3-9.7] 30 (55)			
	Gender, female Race, black CCMI Co-morbidities: Diabetes CKD	13 (41) 7 (22) 4.5 [2.3-7.3] 10 (55) 4 (22)	67 [55-74] 36 (55) 33 (50) 7.5 [4.3-9.7] 30 (55) 28 (51)	S.		
	Gender, female Race, black CCMI Co-morbidities: Diabetes CKD Cancer	13 (41) 7 (22) 4.5 [2.3-7.3] 10 (55) 4 (22) 3 (17)	67 [55-74] 36 (55) 33 (50) 7.5 [4.3-9.7] 30 (55) 28 (51) 13 (24)			

26 (39)

12 (18)

36 (84)

8 (26)

13 (93)

Immune suppress 8 (25)

PPI

Prior surgery

*NA Turner received support from the Antibacterial Resistance Leadership Group (ARLG). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

esults (continued)

Figure 2: Histogram of ribotypes according to source.

Table 2: Epidemiologic characteristics of cases caused by identical ribotypes (presumed clusters).

Ribotype	Service	Age	Date Collected	Dialysis	Prior CDI	Prior Surgery	LabID	Strict
DU101	Internal Medicine	67	07/08/16	Yes		02/17/16	HCFA	HCFA
DU101	Internal Medicine	61	07/14/16	Yes	02/23/16	02/22/16	HCFA	HCFA
DU101	Internal Medicine	91	08/03/16	No	03/15/15		CO	CO
DU101	Internal Medicine	40	08/12/16	No			CO	CO
DU32	Internal Medicine	51	08/27/16	No	06/25/16		CO	CO
DU32	Intensive Care	55	09/19/16	No	08/22/16		HCFA	HCFA
DU32	Internal Medicine	43	09/26/16	No	08/14/16		HCFA	HCFA
DU32	Internal Medicine	83	11/17/16	No			CO	HCFA
DU78	Internal Medicine	67	07/07/16	Yes		08/21/15	HCFA	HCFA
DU78	Internal Medicine	62	07/12/16	No		12/24/14	CO	CO
DU78	Internal Medicine	78	07/24/16	Yes	11/16/15		HCFA	HCFA
DU78	Internal Medicine	85	01/06/17	No		01/04/17	HCFA	HCFA
DU78	Internal Medicine	68	02/06/17	Yes			СО	HCFA

onclusions

C. difficile shows substantial genetic diversity, suggestive of diverse sources of acquisition and consistent with results from Eyre et al in the Oxford Hospital system.³ The epidemic strain 027 was conspicuously absent from Duke Regional Hospital in 2017. In a small sample size to date, HA and CA-CDI showed relatively little intermixing of strain types.

nick.turner@duke.edu 40 Medicine Circle Clinic 1K **Durham, NC 27710** Phone: (919) 970-9863

Duke University School of Medicine

Figure 3: Tables of top ten observed ribotypes from national (CDC) data and Duke Regional Hospital.

Ribotype	No. of	Percent
	isolates	isolates
	(n=504)	
027	102	19
106	48	9
002	40	7
014	36	7
020	30	6
015	18	3
001_072	15	3
056	17	3
017	15	3
005	14	3
Others	201	37

A) CDC HA-CDI²

B) Duke Regional H	HA-CDI
--------------------	--------

Ribotype	No. of isolates (n=66)	Percent isolates
DU78	4	6
020	2	5
DU20	2	3
DU31	2	3
DU42	2	3
DU44	2	3
DU66	2	3
DU89	2	3
DU101	2	3
A12	1	2
Others	45	68

C) CDC CA-CDI²

Ribotype	No. of	Percent
Kibotype		
	isolates	isolates
	(n=619)	
106	58	9
027	52	8
014	46	7
020	40	7
002	35	6
015	21	3
054	20	3
005	19	3
056	18	3
046	17	3
Others	288	47

D) Duke Regional CA-CDI

Ribotype	No. of	Percent
	isolates	isolates
	(n=32)	
002	2	6
DU101	2	6
047	1	3
014	1	3
DU04	1	3
DU06	1	3
DU22	1	3
DU23	1	3
DU27	1	3
DU105	1	3
Others	20	63

Bidet et al. FEMS Microbiol 1999.

^{2.} CDC Annual Report on Emerging Infections, 2015.

^{3.} Eyre et al. *NEJM*. 369(13). 2013.